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Abstract: In the history of technology there occurred many accidents caused by the 
presence and propagation of cracks in a mechanical structure, especially cracks in weld 
seams or already existing in the material. The paper evaluates the damage caused by cracks, 
the superposition of effects by using fracture mechanics concepts (the stress intensity 
factor, the contour integral and the crack tip opening displacement), while in the case of 
superposition fracture modes I and II , the relation was checked against the experimental 
literature data. 
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1. INTRODUCTION 
 
The pressure equipment is used mainly in the chemical and petrochemical industry as well as in classical and 
nuclear power engineering. The appropriate design of such equipment operating under given conditions as well 
as the analysis of the equipment after a certain period of operation should be made on the basis of adequate 
computing relations so as to avoid the kind of damage. 
 
The life assessment after a certain period of operation allowing for fully safe and continued equipment operation 
requires the calculation relations of the materials strength, by taking into account the previous material damage. 
In order to address these problems, the paper examines first the calculation of pressure equipment according to 
current regulations considered most popular by professionals (British Standard 2009 ASME Code, Section VIII - 
Division 3 and standard European EN 13445-3). Further below we have analyzed the experimental and 
theoretical research results to be used in solving the specific issues raised. 
 
With mechanical structures, especially in the case of welds, there may occur brittle fractures that extend and are 
transmitted to the welded parts [1], causing the kind of damage that leads to the complete destruction of the 
structure. It is known that the weld may feature flaws, including cracks that produce high levels of residual 
stress. 
 
When a part breaks down, the part is split into two or several pieces under the action of the applied loads [2]. 
This may occur slowly or quickly and the separation may be: brittle (with high speed crack propagation) and 
ductile (with slow crack propagation). The emergence and, in particular, the crack growth result in lower 
material strength until the load capacity loss occurs, followed in most cases by fracture. 
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Papers [1-6] overview the basic concepts of fracture mechanics, the importance and role of structure cracks, the 
calculation methods for determining stress intensity, the conditions underpinning the propagation and inhibition 
of crack growth and the application of the  critical energy principle to fracture mechanics. 
 
In the European and U.S. standards [7-10] there have been set rules and methodologies for the calculation of 
pressure vessels using the concepts of fracture mechanics. The crack propagation laws that occur during the 
operation of cyclically loaded mechanical structures are numerous and they have been summarized in [11]. 
There have been published several papers [12-23] on the study of the crack propagation phenomenon in 
materials used in the construction of various mechanical structures, as well as computational models used to 
calculate their damage. 
 
In the paper [24], one can find a standardized method for calculating the growth rate of fatigue crack, while [25-
63] analyze the influences of operating parameters, some mechanical properties of materials as well as the 
structural geometric parameters on the crack growth rate. Relations for fatigue calculation, both for linear 
behavior materials and especially for power dependent materials with nonlinear behavior have been deduced 
from [64-69], with consideration of the influence of both average and residual stresses [70]. The calculation of 
the pressure equipment damage and liftime are analyzed in [71-73]. 
 
The paper examines: the calculation of  pressure equipment by using fracture mechanics concepts present in 
some standards, the status of specific fracture mechanics calculations in the literature, some experimental 
determinations of the crack growth rate, experimental results on the superposition of effects, as well as the 
experimental data analysis regarding the correlation between the type of loading and the concept of damage in 
order to highlight possible design options involving the use of the concept of damage. 
 
 
2. CURRENT STATUS OF PRESSURE EQUIPMENT CALCULATION IN DESIGN STANDARDS 
BASED ON THE USE OF FRACTURE MECHANICS CONCEPTS 
 
Further down there has been presented the evaluation of materials used in the calculation of pressure vessels 
based on fracture mechanics concepts in British Standard [7], ASME Code, 2009, Section VIII - Division 3 [8] 
and the European standard EN 13445-3 [10]. 
 
a. The British Standard [7] provides a design methodology for pressure vessels operating at temperatures below 
0°C, so as to avoid brittle fracture. For this purpose there shall be determined: 
 
- The design reference temperature R, which must be less than the minimum design temperature. 
 
 R D + S + C + H (1) 
 
where, D is the minimum design temperature; S is the adjustment temperature depending on the membrane 
stress calculated; C is the temperature adjustment depending on the construction category (may vary between 
0°C or - 10°C); H is the  adjustment temperature taking into account the heat treatment after welding; 
 
- The design reference thickness, e, depending on the layout of the pieces to be welded and the heat treatment 
after welding; 
- The impact test temperature, depending on the design reference temperature and the design reference thickness 
in the existing standard graphics; 
- The impact energy. 
 
The minimum allowable impact energy value in the impact test depends on the minimum stress and the size of 
the specimen used. 
 
b. In the Normative 2009 ASME Code, Section VIII - Division 3 [8], the calculation of the pressure equipment 
by using fracture mechanics is based on the assumption that the crack initiation is complete and cracks are 
present in the most stressed areas of the vessel. To this end: 
- One determines the final allowable crack depth as a basis for calculating the number of design loading cycles, 
Np. 
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For single block design vessels the final allowable crack depth is considered either maximum 25% of the section 
thickness under consideration, or 25 % of the critical crack depth. For vessels with two or more wall layers, the 
final allowable crack depth in the inner layer must be equal to its thickness. For all other layers, the final 
allowable crack depth should not exceed 25 % of the thickness of that layer, except for the outer layer wherein 
the final allowable crack depth should not exceed 25 % of the theoretical critical depth: 
 
- One calculates the stress intensity factor, KI and the crack growth rate in thickness, with the Paris - Erdogan 
relation [8] for the deepest point on the crack periphery: 
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is the variation of the stress intensity factor, where max,IK  and min,IK are the stress intensity, maximum and 
minimum, respectively, all trials being considered except for the  residual stress, while RK is calculated with the 
formula: 
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where KI,res, is the intensity factor corresponding to the residual stress. 
 
The surface crack growth is calculated with the formula: 
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Here K is calculated based on the crack type, shape and its position (on the corner inner or outer surface around 
a hole, etc.) and the crack plane (circumferential or meridional). 
 

If,
 

0,
*

max, resII KK  then da/dN can be considered equal to 0. 

 
The values of constants C and m are taken according to the vessel wall material. 
 
- One calculates the number of stress cycles, Np, which is a function of the loading order (sequence). The number 
of cycles can be calculated by numerically integrating the crack growth rate given by equation (2), by 
considering the value of KI as constant over a span, a, in the crack growth, which is small compared with the 
crack depth. The calculation shall be repeated by using increasingly smaller intervals until we get an 
insignificant change in Np; 
- One determines the maximum design pressure at room temperature. 

 
c. The standard EN 13445-3 [10] makes use of the fracture mechanics method in order to determine the 
conditions for avoiding brittle fracture in C and CMn steels and low alloy steels featuring lower minimum stress 
of 460N/ mm2. The impact test temperature is determined according to the stress value characteristic of the 
parent material, the impact energy KV and the reference thickness from the graphs that show the dependence of 
the design reference temperature, the impact test temperature and the reference thickness; 
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d. From the analysis of the current calculation methods taken from the design standards for pressure equipment, 
one has found that there is no calculation method allowing the superposition of the effects of loadings upon a 
mechanical structure. 
 
For example, with the ASME Normative, calculation is quite difficult because for each type of crack there exists 
another factor to be determined, and the effect of the residual stress is evaluated separately. At the same time, the 
number of stress cycles, Np , cannot be obtained from a single relation, but is repeated for increasingly smaller 
crack depth intervals, down to an insignificant change of Np. 
 
With the European standard EN 13445, the fracture mechanics method is confined to a limited domain of 
application, only for C and CMn steels and low alloy steels featuring a minimum stress lower than 460N/mm2, 
while for wall thicknesses below 10 mm there are no specific relations, thus one applies the relation used for the 
reference thickness of 10 mm. 
 
The British Standard provides a calculation methodology applicable only to vessels operating at a temperature 
below 0 °C, while for determining the reference thickness there is no unique relation; the latter is determined by 
considering the layout of the parts to be welded and the heat treatment after welding. 
 
 
3. THE STATE OF THE ART IN THE USE OF CALCULATIONS BASED ON FRACTURE 
MECHANICS CONCEPTS IN LITERATURE 
 
3.1. Crack growth rate 
With variable cyclic loadings one uses the concept of crack propagation rate, da/dN, where a is the characteristic 
crack length and N is the number of loading cycles. 
 
The doublelogarithm diagram (Figure 1) shows the dependence of the crack propagation rate logarithm, da/dN 
and the stress intensity variation factor logarithm, KI = KI,max – KI,min, given by, 
 
  aYK I  (6) 
 
where  = max – min  is the normal stress variation, Y is a factor that depends on the crack position and shape. 
 

 
Fig. 1. Dependence of crack propagation rate on stress intensity factor variation. 

 
In the diagram there are three domains: I - crack retarding domain, II - the domain of constant propagation rate, 
III - the domain of  high propagation rate; Kth is the threshold value of  KI ,while KI,c is the critical value of 
the stress intensity factor variation. 
 
An overview of specialist literature yields  over 120 relations [11] for calculating the crack propagation rate 
depending on the variation of the stress intensity factor ( K = KI), the maximum stress applied ( max), fracture 
stress ( r), the yield strength ( c) and the cycle asymmetry coefficient (R) (Table 1). 
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Table 1. The main propagation laws of fatigue cracks [5, 11]. 
Propagation laws according to 
stress intensity factor variation 

K= KI 

Propagation laws based on the 
maximum stress applied max  

and crack size 

Propagation laws based on fracture 
toughness, KC = KI,C and the stress 
intensity factor variation K= KI 
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One should mention the following relations (recommendable for practical use) [16]: 
- The Paris-Erdogan law (7), the most commonly used; 
- Donahue’s Law (10), recommended for domain II; 
- Forman’s law (9), originally proposed for domain III, further extended to domain II; 
- Walker’s Law (36), for domain II but applicable to limited areas from domains I and III. 
 
Some propagation laws were obtained from theoretical models while others were deduced experimentally. 
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3.2. Experimental determination of the crack growth rate for some steels 
PKSingh [23] conducted tests on seamless pipes, SA333 Gr.6 carbon steel with the chemical composition given 
in Table 2 and the room temperature tensile properties listed in Table 3. We used 4.5 mm diameter specimens 
according to ASTM E 606 [24] obtained by cutting the same material. 
 

Table 2. Chemical composition [%] of pipe material [23]. 
C Mn Si P S Al Cr Ni V N 

0.14 0.9 0.25 0.016 0.018 < 0.1 0.08 0.05 < 0.01 0.01 
 

Table 3. Tensile properties of pipe material at room temperature [23]. 

Yield strength y [MPa] Tensile fracture stress u 
[MPa] Elongation of fracture (%) Reduction in area when 

breaking(%) 
302 450 36.7 72.96 

 
Stress-strain curve used by Singh [23], is given by the relation: 
 

 
n

kE

/1

22
100

2
 (38) 

 
where k = 354.27 MPa and n = 0.1523. The constants were obtained by adjusting the points resulting from the 
tests. 
 
For a low number of fatigue loading cycles we used the Basquin-Coffin - Manson relation, 
 

 c
ifb
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NE
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where f = 586.06MPa; b = -0.0757; f =24.06%; c = -0.4814; E = 203GPa. 
 
In  relations  (38)  and (39)   is  given in%,   in  MPa,  Ni is  the  number  of  load cycles  resulting  in  specimen 
failure, E is the modulus of elasticity in MPa. 
 
The crack growth rate curve was obtained by using three specimens from the same material as the pipe, for the 
asymmetry coefficient R = 0.1, R = 0.3, R =  0.5.  The  material  constants  were  evaluated  by  adapting  the  
experimental points to the law of Paris (7), where the constant values are given in Table 4 while da/dN is in 

m/cycle and K in MPa m . 
 

Table 4. The values of constants C and m for various values of R. 
R C m 

0.1 3.807 10-12 3.03445 
0.3 4.061 10-12 3.11734 
0.5 4.079 10-12 2.90897 

 
As well known, the asymmetry coefficient has a negligible effect on the crack growth rate curve according to 
Paris's law while constants C and m do not cause significant variations in the asymmetry coefficient. The 
average values of C and m, in this case, are 3.982 10-12 and 3.0, respectively. 
 
Experiments on pipe specimens with an outer diameter of 219 mm and 15.1 mm in thickness [23] with notches 
made on the outer cylindrical surface (Figure 2), the specimens undergoing pure bending, resulted in the 
following: 
- The crack increased when the defect was over 0.1mm in size; 
- The crack initiation was observed across the wall thickness, from the maximum depth of the notch; 
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- The number of load cycles required for the crack to grow from 0.1mm depends on the maximum applied stress, 
- The asymmetry factor and the initial notch size; 
- The analysis of the crack growth rate was based on Paris’s law (7). 

 

 
Fig. 2. Cylindrical specimen with rectangular notch on the outer surface [23]. 

 
The dependence of the crack growth rate, da/dN, and the characteristic crack size, a, across the pipe wall 
thickness is shown in Figure 3 for several values of the asymmetry coefficient, R. 
 
According to the logarithm relation (7), we obtain: 
 
 y = b + m x (40) 
 
where we wrote: 
 

 
N
ay

d
dlog ; Kx log ; Cb log  

 
For different values of the asymmetry coefficient and cylindrical specimen wall thickness there were obtained 
the values of constants C and m [23], listed in Table 5. 

 
Table 5. Constants and equations of crack growth rate curves (Figure 3) according to wall thickness, s and 

asymmetry coefficient, R. 

R s 
mm C m Ecuation of curve 

0.1 15.58 3.425 10-9 3.11095 y = -8.534 + 3.11095 x 
0.3 15.38 5.286 10-10 3.31972 y = -7.687 + 3.31972 x 
0.1 15.38 4.061 10-9 3.11734 y = -7.137 + 3.11734 x 
0.5 15.12 3.325 10-9 3.23678 y = -8.821 + 3.23678 x 
0.5 15.17 2.795 10-8 2.50078 y = -8.362 + 2.50078 x 
0.1 15.13 1.71 10-8 2.80217 y = -9.7 + 2.80217 x 

 
The six curves in Figure 3 were obtained after loading six specimens (tubes) with different pipe wall thickness, 
under different conditions (maximum load levels, number of load cycles) at several values of the asymmetry 
coefficient, R, thus also obtaining different values for the same value of R for constants C and m. 
 
Work [25] based on recent studies [26, 27], whose object was the study of thick-walled containers tracks down 
the dependence of the crack growth rate, da/dN (microinch/cycle; 1inch = 25.4 mm) depending on the stress 
intensity factor variation, K for A533Grade B welding steel and the thermal influence zone factor considered. 
In these studies, both temperature variations and specimen size were considered. The following relations have 
been used:

             
- The stress intensity factor for a surface semielliptical defect, normally oriented to the circumferential stress: 
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where Q is a parameter that depends on the shape of the defect. 
 

 
 

 
Fig. 3. Crack growth rate curves (s-cylindrical specimen wall thickness). 

 
The critical size of the fracture crack with the formula: 
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Number of load cycles down to failure, N, where KI = MPa  [25, 28-30]: 
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where, n is the dependence slope of  log (da/dN) on log ( K) (Figure 1), acr is the critical crack size, ai  is the 
initial crack size, C0  is an empirical constant,  is the cyclic load variation, M is a parameter dependent on the 
crack geometry. 
 
In studies about the influence of the initial crack size, a0, upon the number of load cycles down to failure, N, in 
the hypothetical case of a pressure vessel, it was found that with the depth of the defect over 12.7 mm and a 
length of over 127 mm, the lifetime corresponds to N = 40 000 cycles for  = 275.8 MPa and N = 130 000 
cycles for  = 184.096 MPa [25]. 
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In [31] there was experimentally determined the crack growth rate for a heat-resistant steel 13CrMo4-5, widely 
used in the manufacture of pressure vessels. The metal plate specimens used were subjected to mechanical 
variables of different frequencies, featuring cycles with the asymmetry coefficient 1 ;1R , and maximum 
loading force Fmax  50 kN [31]. 
 
In order to determine the stress intensity factor variation, K, one used the relation recommended by standard 
ASTM E 647-05 [31]: 
 

 432
3/2 5.6014.7213.324.640.866

)(1
2),(

WB
FWaFgK e  (45) 

 
where a - crack length, W, B - characteristic specimen dimensions,  = a / W. 
 
There were applied variable loads with sinusoidal cycles with frequencies  = 5 Hz and 20 Hz. The asymmetry 
coefficient featured: R = 0.1, R = 0.3 and R = 0.5. 
 
The results, interpreted according to the Paris-Erdogan law (7), are given in Table 6. 
 

Table 6. Summary of experimental results [31]. 
Frequency of  
load cycles,  

Hz 

Asymmetry coefficient, 
R 

The results obtained with Paris law, with da/dN, in 

mm/cycle and K, in MPa m  
C m 

20 0.1 8.219 10-8 2.248 
20 0.5 1.226 10-8 2.920 
5 0.1 2.057 10-8 2.667 
5 0.5 5.464 10-8 2.306 

20 0.5 4.891 10-8 2.406 
20 0.1 1.313 10-8 2.167 

 
The experimental results for steel 13CrMo4-5 showed that: 
- For all the conditions of specimen sampling and testing, the growth rates of fatigue cracks were lower than 
those obtained by calculation according to the standards in force; 
- A great influence on the crack growth rate is exerted by the asymmetry coefficient, R, and the frequency of 
load cycles, . 
 
One can draw the following practical recommendations [31] for steels with yield limit Rp0,2  600MPa  when  

using the Paris-Erdogan law (with da/dN in mm/cycle and KI in MPa m ): 
- For structures of ferritic, austenitic and duplex steels operating in the open air or non-aggressive environments, 
at temperatures below 1000C, the Paris-Erdogan law is used with m = 3 and C = 1.65 10-8; 
- For ferritic or duplex steel structures in marine environment at temperatures below 20 ºC, C = 7.27 10-8 and  
m = 3; 
- For steel structures operated at temperatures below 600 ºC, m = 3 and C = 1.65 10-8(ERT/EET)3,  
 
where ERT –steel modulus of elasticity at ambient temperature; EET - steel modulus of elasticity at high operating 
temperature; 
 
- The threshold stress intensity factor, Kth is dependent on the environment surrounding the structure operation 
and the asymmetry coefficient of the variable loading cycles, R. With steel structures of any type that operate in 
the open air or in non-aggressive environments, but also with ferritic steels with cathodic protection operated in 
the marine environment, one can use the values Kth = 2.0 MPa m, for R  0.5; Kth = 5.5-6.8R, for 0  R < 0.5 

and Kth = 5.5 MPa m ,  for R < 0, and for any type of steel without cathodic protection, used in the marine 
environment, one will consider Kth = 0. 
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4. DAMAGE CAUSED BY CRACKS 
 
Material damage can generally be defined as a reduction of the material capacity from a certain point of view, 
such as, for example, the reduction in mechanical strength, in deformation capacity etc. [5, 71]. In fact, any 
material ages over time, so it deteriorates, the process being irreversible. In the case of engineering, when a 
material undergoes stresses that are lower than the material yield limit, it is accepted that the damage is 
reversible. 
 
The presence of cracks may lead to a significant deterioration of mechanical structures. 
 
The damage of structures through external actions, written as D(t), where t is the loading duration, is a 
dimensionless variable whose values range between 0 and 1. For D(t)=0 the structure is not damaged, and for 
D(t) = 1 the structure is destroyed. 
 
With cracked structures two extreme situations may be encountered [5]: 
 
- Structures whose damage increases to D(t)  =  0.8  … 0.9  within  a  time interval  t =  0.1tr, where tr is the time 
down to failure, beyond which the damage grows very slowly down to failure (Figure 4 , curve 1), is the case of 
structures allowed to operate after crack initiation; 
- Structures wherein the damage increases slowly over time t = (0.9-0,95)tr, beyond which the propagation 
occurs very rapidly (Figure 4, curve 2), in which case the cracked structure is not allowed to continue operation.  
 
A rare case is one when the time variation of the damage is linear (Figure 4, curve 3). 
 

 
Fig. 4. Damage variation in time [5]. 

 
In literature there are many relations that account for structure damage caused by the action of a the single cyclic 
load [72], written as: Dc and calculated, on the basis of a reduction induced through cyclical loading, of a certain  
material characteristic; D, when it is a measure of the strain accumulation or durations of mechanical, thermal 
loading etc. 
 
Out of the relations classified in [40, 72] we should mention: 
 
- Shanley's relation [40, 41], 

 
ca

aD 0 , (46) 

 
where a0 is the initial crack size and ac  is the critical crack size; 
 
- The Ibrahim and Miller relation [40, 42], based on crack growth in two stages, 
 

 
fa

aD 0 , (47) 

 
where a0 is the initial crack size; af  is the final crack size; 
- Jinescu’s relation [5, 72], 
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where, a is the current crack size,  = 1/k comes from the law of structural material behavior (  = M k , where  
is the applied normal stress,  is the strain and M  and k are the material constants). 
 
It is recommendable to use relation (48) that includes the material behavior through exponent . 
 
The influence of residual stresses on damage is seen in works [4, 5, 45]. 
 
The calculation of the total deterioration of the mechanical structures subjected to simultaneous or sequential 
loadings with two or more loads of the same kind, of different types, or of a different nature is achieved by the 
superposition of effects based on the principle of critical energy [4, 5] by algebraically adding the individual 
deteriorations. 
 
 
5. SUPERPOSITION OF EFFECTS DUE TO MULTIAXIAL LOADING 
 
An important issue is the superposition of several types of loadings of the same kind or of different kinds upon 
the mechanical structure and the procedure of calculating the total effect of these loadings on such structures [4]. 
 
5.1. Effect superposition of stresses corresponding to the three fracture modes 
One considers the loading with normal stress, , according to the failure mode I and tangential stresses, II and 

III corresponding to the failure modes II and III. 
 
In the case of materials with nonlinear behavior (  = M k), on the basis of the critical energy principle [4-6, 54-
56], we obtained a general relationship, 
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where PT is the total participation of the specific energies induced by stresses , II and  III;  KI,c - fracture 
toughness in fracture modes I, II and III,   is a dimensionless factor which imparts the stress direction: if stress 

  opens the crack,  = 1 and if the stress closes the crack,  =  -1;   and 1 are exponents dependent on the 
material behavior and the loading speed [5]:  = 1/k and 1 = 1/k1 (where k1 is provided by the behavior law, 

1kM , where  is the tangential stress,  is the specific slip, M  and k1 are constants). 
 
When reaching the critical state the condition must be fulfilled [5, 6]: 
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where Pcr  1 is the critical participation. 
 
Another method of calculating the total result induced by the superposition of effects in fracture mechanics lies 
in using concepts  (opening movement at crack tip) and J (full contour integral). One uses relationship 
involving concepts  and J, mapped on [4-6, 56]: 
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where I , II , III are the opening displacement values at the crack tip for fracture modes I, II, III, while I,c, II,c, 
III,c are the corresponding critical values; 
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where JI ,JII , JIII are the contour integrals for the corresponding fracture modes while JIc ,JII,c, JIII,c, are the critical 
values of the contour integral for the corresponding fracture modes. 
 
5.2. Analysis of experimental results 
In [1] there are introduced the dependencies, derived experimentally, between the stress intensity factor for 
fracture mode I, KI , and the stress intensity factor for fracture mode II,  KII, considered for a mechanical 
structure loaded according to the two fracture mechanisms (Figure 5). The material used is an aluminum alloy. 
 
 

                  
                                                                 KI (ksi in) 

a.                                                                                b.  
Fig. 5. Dependence between the stress intensity factors, KI and KII: 

a – experimental values [1]; b – the curve corresponds to relation (53), 
a particular case of the general relation (50). The points 1 - 8 are the experimental ones for Figure 5, a [1]. 

 
In order to draw the curves mapping out the dependence of the KI/KI,c ratio and the KII/KII,c  ratio, there were 

determined from Figure 5.a, the two values of fracture toughness  for the two modes of fracture, KI,c=29ksi in ,  

KII,c =25ksi in , respectively, and the corresponding values KI and KII for the eight points in the figure. Based 
on these values, in Figure 5.b, there was drawn the curve that yields the dependence of the KI/KI,c  ratio and the 
KII/KII,c ratio. 
 
The analysis of Figure 5.b shows that in the case of loading effect superposition according to fracture modes I 
and II of the aluminum alloy under study [1], the rupture occurs when there is fulfilled the condition imposed by 
relation, 
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resulting from relation (50) for  = 1, k = k1 = 1, KIII = 0, wherein, according to the experimental data (Figure 
5.a), Pcr = 0.92÷1.0. 
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6. CALCULATION OF CRITICAL STRESSES BY CONSIDERING CRACK DAMAGE 
 
6.1. Critical stresses for statically loaded cracked structures  
In cracked stuctures one encounters the superposition of the effect caused by the crack with the effect of the 
stress away from the crack. On the basis of the critical energy principle [4, 57] the total participation, PT, is equal 
to the sum of the participations of specfic energies corresponding to stress, , and the stress,  [57]: 
 
 PT = P( ) + P( ) (54) 
 
One considers the case of the nonlinear material behavior of mechanical structures, under normal stress load, . 
It has been shown that in this case [5, 57], 
 

 P D(a)=
2

1

cra
a

  

 
The critical state is reached when: 
 
 PT = Pcr (55)  
 
With notations: cr - critical normal stress of the material without cracks and cr(a) - critical normal-stress of the 
material with one crack, one obtained relation [57]: 
 

 1
1

)(1)( aDa crcr  (56) 
 
showing that the presence of crack reduces the critical stress. 
 
6.2. Critical stresses for cyclically loaded structures with cracks 
 If a mechanical structure is cyclically loaded with normal stresses ranging between min and max, one calculates 
the average stress, m and the stress amplitude, a, with relations: 
 

m= 0,5( max+ min) 
a = 0,5( max - min) 

 
The total participation of the specific energy, PT is [4]: 
 
 PT ) = P( a) +P( m) +P(a) (58) 
 
out of which we obtain relation [5, 57]: 
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1
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crm
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 (59) 

 
where a,cr is  the  fatigue  strength  of  the  structure  with  N loading cycles  while  m,cr may be the yield limit or 
failure resistance which depends on whether failure occurs at stresses  < c or at c  < r; 

m
 depending on 

the sign of m ( 1
m

 for m >0 and 1
m

 for m < 0). 
 
The damage incurred by cyclic loading caused by the crack is calculated with (48). 
The critical crack depth can be calculated based on the stress intensity factor for the most unfavorable loading. 
For example, for a cylindrical vessel under pressure one obtains for acr the relation [5]: 
 

  (57) 
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The critical participation in this case, Pcr = Pcr(a), is calculated with respect to the damage caused by the crack, 
with relation [4, 5, 44, 58]: 
 
 Pcr(a) = 1- D(a) (61) 
 
Relation (48) is used for calculations worked out with respect to the critical state. 
 
The stress amplitude upon reaching the critical state for structures with cracks after N loading cycles, according 
to works [5, 57], is: 
 

 aDPNNa m
crm

m
crss

1
1

1

,
,1,1 )()();(  (62) 

 
where -1,s(N) is the strength of the crackless structure under alternating symmetrical loading with normal 
stresses; -1,s(a; N) is the strength of the cracked structure under alternating symmetrical loading with normal 
stresses. 
 
Relation (62) for specimens under alternating symmetrical loads ( m = 0), where Pcr = 1, becomes: 
 

 1
1

11 )(1)();( aDNNa  (63) 
 
which is similar to relation (56) used for static loading. 
 
If a structure is loaded simultaneously with normal and tangential stresses, the effects of the two loads are 
superposed and the total effect is calculated according to the principle of critical energy [4, 44]. The calculation 
of the number of load cycles with normal stresses, by considering the mean stress, the residual stress and the 
deterioration is presented in paper [73]. 
 
If the verification or calculation of a mechanical structure with cracks is made with respect to the the allowable 
state, one resorts to relations that are similar to those for the critical state. One replaces the critical stresses with 
allowable stress and the deterioration related to the critical state with the deterioration related to the allowable 
state [4, 5]. 
 
 
7. THE ANALYSIS OF EXPERIMENTAL DATA OF CYCLIC LOADING AND THEIR 
CORRELATION WITH THE CONCEPT OF DETERIORATION 
 
In order to illustrate the dependence of failure resistance on deterioration and vice- versa, one has presented the 
results obtained in [63] for a rectangular shaped tile. 
 
Starting from this experiment, for the ceramic plate with one crack located at different sloping angles,  and with 
crack length 2a (Figure 6.a) under uniaxial compression loading, one could determine the values of the 
compressive strength variation, c , at different values of crack length (Figure 6.b) and the amount of damage. 
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                 a.                                                                          b. 
 

Fig. 6. a. – The crack geometric parameters; 
b. – uniaxial compressive strength variation depending on crack size [63]. 

 
The variation of the material compressive strength is 
 
 )()0( accc  (64) 
 
where c (0) is the compressive strength of the material without cracks and c(a) is the compressive strength of 
the material with a crack. From relations (56) and (64) it follows 
 

 1
1

)(11)0( aDcc   (65) 

 
Since the material (sandstone) has brittle behaviour, k = 1 and  = 2, so that relation (65) becomes, 
 

 2
1

)(11)0( aDcc  
(66)

 

 
out of which we obtain the resulting expression for damage, 
 

 
2

)0(
11)(

c

caD  (67) 

 
Table 7 presents the variation of compressive strength values obtained experimentally, c,exp, and damage D (a) 
calculated with equation (67) for the different values of crack length, 2a. 
 

Table 7. Variation of experimentally determined compressive strength and damage values calculated with 
equation (67). 

2a (mm) 5 10 15 20 25 
c,exp (MPa) 30.76 65.38 88.46 115.38 126.92 

D(a) 0.283 0.546 0.688 0.821 0.866 
One considered c (0) = 200 MPa. 
 
Analyzing the data in Table 7 one can find that the material damage increases with the crack growth.           
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8. CONCLUSIONS 
 

The paper analyzed the calculation relations for pressure vessels by resorting to fracture mechanics concepts 
(stress intensity factor) and the concept of damage (damage due to the presence of cracks). There were 
investigated the particularities of calculations set out in the American standard ASME Code, 2009, Section VIII - 
Division 3, European standard EN 13445-3 and the British Standard PD 5500: 2009. It was found that the 
calculation method set out in these standards have a limited scope and take no account of the damage caused by 
cracks. 
 
Calculation according to the ASME Normative is quite difficult because for each type of crack one has to 
determine another stress intensity factor, the effect of residual stresses must be evaluated separately, while the 
determination of the number of loading cycles requires a rerun of the calculation for increasingly smaller crack 
depths. 
 
With standard EN 13445-3, the fracture mechanics method has a scope of application limited to certain steels. 
 
The British Standard provides a calculation methodology based on fracture mechanics applicable to vessels 
operating at negative temperatures, while there is no unique relationship for the determination of the reference 
thickness. The literature review revealed that there are over 120 relations for calculating the crack propagation 
rate, which is expressed either depending on the stress intensity factor variation, the crack size, the maximum 
stress applied, the fracture toughness, the asymmetry coefficient or the equipment wall thickness. It was found 
that the number of loading cycles depends on the value of the maximum loading stress, the asymmetry factor and 
the initial crack size. 
 
We analyzed the damage resulting from cracks, highlighting the relations for calculating damage, where 
equation (48) features the highest level of generality. The superposition of effects was analyzed for the case of 
multiaxial loadings by evaluating the results of the effect superposition with the aid of such concepts as the stress 
intensity factor, the crack tip opening displacement and the crack contour integral. Their relation for the 
superposition of effects for fracture modes I and II was verified with literature experimental data, thus 
confirming the high degree of generality of relation (50). We analyzed the calculation of the critical stresses by 
considering the damage caused by the cracks under static and cyclic loadings. This resulted in relations (56), (62) 
and (63). 
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